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Time-dependent, four-point density correlation function description
of dynamical heterogeneity and decoupling in supercooled liquids
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Dynamical heterogeneity and the decoupling of diffusion and relaxation in a supercooled liquid is
investigated via a time-dependent, four-point density correlation function. We show that the main
contribution to the corresponding generalized susceptibilityt) in a molecular dynamics
simulation of a Lennard-Jones liquid arises from spatial correlations between temporarily localized
(“caged”) particles. By comparingy,(t) with a generalized susceptibility),(t) related to a
correlation function for the squared particle displacements, we demonstrate a connection between
dynamical heterogeneity and the decoupling of relaxation and diffusion20@ American
Institute of Physics.S0021-960600)52402-7

Spatially heterogeneous dynami¢slynamical hetero- by neighboring particles. We evaluate these quantities for a
geneity”) in otherwise homogeneous supercooled, glasseold Lennard-Joned.J) liquid, and show that in this system
forming liquids is now well established in experiménfs  x4(t) is dominated by growing spatial correlations between
close to the glass transition temperatiiig, and this heter- localized particles. We then compare the behaviog ft)
geneity is even apparent at higher temperatures above thgth a generalized time-dependent susceptibility related to a
mode couplin§ temperatureT, in simulationss~? For ex-  correlation function of squared particle displacements. From
ample, recent studi&s'? of the dynamics of supercooled, these two quantities we find twdifferentcharacteristic time
glass-forming polymeric and binary simple liquids in termsscales: the time scale on which temporarily localized par-
of the correlations of monomer or particle displacements reticles are most spatially correlated scales with temperature
vealed the dynamical heterogeneity of these liquids and Hke the structural relaxation time, while the time scale on
rapidly growing range of correlated motion on cooling to- Which the correlation between squared particle displace-
wardsT,. At the same time, the decoupling of translational MeNts is strongest scales like the inverse diffusion coeffi-
diffusion and relaxation as well as translational and rotaCi€nt. In this way, we demonstrate that the decoupling of
tional diffusion in these fluids is also well-known, and simu- diffusion and relaxation in this model liquid arises from dy-

lations shoW?~5 that this decoupling begins well abode ~ namical heterogeneity. _ _ _
where dynamical heterogeneity first appears. Several authors C?onsﬂer_a “,fﬂu'd ofN particles in a volumeV, with
have argued that the decoupling of diffusion and relaxation igensnyp(r,t) =2i-16(r—ri(t)). The simplest density cor-

a direct result of dynamical heterogeneity, with the sIOWes{elation function that contains information on correlated par-

particles dominating structural relaxation and the fastest parI—ICIe motlo_n IS fourth-order. We_ write this function in terms
ticles dominating diffusiork#511:121617 of the deviations of(r,t) from its average valuehp(r,t)

In this letter we use a four-point time correlation func- =p(r,0) ~ po, where po=(p)=N/V, and(---) denotes an

tion of the density to probe dynamical heterogeneity in aensemble average-

glgss-formmg I|gU|d, and eIumdate.the connection between Fa(r1,12,0=(Ap(r1,00Ap(r1,H)Ap(r2,0)Ap(ry,t))
this heterogeneity and the decoupling of bulk transport pro-
cesses. This four-point function was first investigated in a —(Ap(r,00Ap(rq,t))
- 18 .
supelrgooled liquid by Dasgupt a_I., and recently Dopatl X(Ap(r20)Ap(Fat)). 1)
et al.” have demonstrated analytically and computationally
the interesting behavior of the related generalized four-pointerms involving one position only are subtracted in Ex).
susceptibility y,(t) (defined below. As shown in Ref. 19, since they contain no information on spatial correlations of
x4(t) can be represented in terms of the fluctuations of amparticle motionsF,(r,r,,t) can be written,
“order parameter” that is a bilinear, time-dependent product
of densities. Here we show that the self-partyaf{t) is di- Fa(rq,ro,1)=Gu(rq,ro,t) +FAF4(rq,r5,t),
rectly related to spatial correlations between temporarily lo- ) ] .
calized particles, while the distinct-part is related to the corWhere the two-point, two-time, foijgrth-order correlation func-
related motion of particles into positions previously occupiedion of densitiesy, is defined as*

Ga(r1,r2,1)=(p(r1,00p(r1,t)p(r2,0)p(rz,t))
30n leave from Institute of Automation & Electrometry, Russian Academy
of Sciences, Novosibirsk, 630090, Russia. —(p(r1,00p(r1,1)){p(r,,0)p(rs,t)).
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AFy(rq,r5,t) consists of second- and third-order correlation
functions of density. A straightforward calculation shows
that [ fdrq, dryAF,(rq,r,,t) vanishes by symmetry, and as a
result, the volume integrals of,(r,r»,t) and Gs(rq,r»,t)
are equal to each other and correspond tostmaegeneral-
ized susceptibilityy3(t).

V
Xg(t):%ffdrldrzgzl(rlvrbt)-

It is straightforward to show thatg(t) can be written as

BV
Xa(h) = Tz [{Q5(D) ~(Qo(1))?], @
where B8=1/kgT, and the time-dependent “order param-
eter” Qu(t) equals

N N
Qo<t>—fdrp(r0>p rH=2, 2 a1(0)-r,(b).
3

In a simulation,Qy(t) is numerically ill-defined(for a
finite system since the probability that particjeexactly re-
places particlé is infinitely small. Following Paris?® we
therefore modifyQq(t) by an “overlap” functionw(r) that
is unity inside a region of siza and zero otherwise, wheee
is taken on the order of a particle diametef! This leads to
an a-dependent counterpart @q(t),

Q)= f drydrop(ry,0)p(ra,t)w(|ri—ry|)

N N
> > fdrw(|r|)5(r+ri(0)—rj(t))
i=1j=1

N
Z (|rij_l7~j|),

whererijzri(O)—rj(O) and g;=r;(t)—r;(0) is the dis-
placement of particlé during the time interval from zero to
t. We choosea=0.304, as in Ref. 19.

ReplacingQq(t) in Eg. (2) by Q(t) yields

"MZ

(4)

%
xa(t)= %[(Qz(t)%(Q(t))Z], ©)

which gives the following expressibhfor y4(t) in terms of
the four-point correlation functio®4(rq,r,,rs,rs,t):

V
Xa(t)= Wf drydrydrgdraw(|ry—row(|rz—rgl)
X Gy(rq,rp,rz,rg,t), (6)
where
Gy(r1,r2,r3,r4,1)=(p(r1,00p(r,,t)p(r3,0)p(ry,t))
—(p(r1,0)p(ry,t))
X(p(rg,O)p(r4,t)>. (7)

We can writeQ in terms of its self and distinct parts,
Q=Qst+Qp. The self partQg corresponds to terms with
=j in Eq. (4):
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N N
Qs<t>=2i fdrw<r>5<r+ri<0>—ri<t>>=2 W( ),

()
where u; is the magnitude ofi; . The distinct partQp is
equal to

N N
Qo(v=2, 2, wilry— i) C)
j#I

Then x,(t) can be decomposed into selfydd, distinct-
(xpp), and interference sp) parts: x= xsst xoo+ Xsb-
From Eq.(5), xssand xpp describe the fluctuations @g
and Qp, respectively, and¢sp describes the cross fluctua-
tions: xs<(Q%—(Qs)?. xpp=(Qp)—(Qp)? and xsp
*(QsQp)—(Qs)Qp). According to Eq.(8), Qg(t) con-
tains only contributions from small displacementg<a,
sincew(u;)=0 for u;>a, and thusysdt) is the suscepti-
bility of localized particle$? those which during a time in-
terval [0,t] move less than a distanee In contrast,Qp(t)
contains contributions from particles for whidh;; — ;|
<a, that is, particles that are replaced by a neighboring par-
ticle.

In Ref. 8, a different generalized susceptibilipy(t)
was defined in terms of the fluctuations in an “order param-
eter” given by the total particle displacemdud{t) in a time
interval t: U(t)=3N,u(t)=/dru(r,t), where the dis-

placement density field(r, t)=2i’\':1m(t)5(r—ri(0)). Here
we comparey,(t) with xy(t), defined as
xm(t)= Al [(MZ(1)) —(M(1))?], (10)
M (M)

where M(t)=3N, u?(t) (i.e., M(t) is the sum of the
squareddisplacements for one system in a time interval
[0t]). Like xy(t), xm(t) is proportional to the volume inte-
gral of a correlation function dfin this case squarggarticle
displacement®? Both the displacement density fieldr,t)
and squared-displacement density fielf,t) are dominated
by particles with large displacements.

To evaluate these quantities we use data obtained from a
molecular dynamics simulation of a model LJ glass-former.
The system is a three-dimensional binary mixture (50:50) of
500 particles interacting via LJ interaction parameté&iale
analyze data from state points at seven different temperatures
T approachingr .~ 0.592 from abov® at a constant density
p~1.3.(In the remainder of this letter all values are quoted
in reduced unit3?* All quantities presented here are evalu-
ated in theNVE ensemble following equilibration of the sys-
tem at each state point. Further simulation details may be
found in Refs. 25, 26.

In Fig. 1(a) the susceptibilityy,(t) calculated via Eq(5)
is shown as a function of time for different valuesfAs
found for a different LJ mixture in Ref. 19, for all ,4(t) is
zero at short time and attains a small constant value at large
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. - . Figures 3a) and (b) show theT-dependence of, and
FIG. 1. (e) T_|me dependence of the eu_sceptlbll)@y(t) at various tempera- t* respectively and compare them with both the inverse
tures as indicated ifb). Inset: Self; distinct, and cross-terms pf(t) at T Mo 1= . L B .
=0.62. (b) Time-dependence of the “squared-displacement” susceptibility S€lf-diffusion coefficientD 1 and the structural relaxation
xm(t) at the same values df as in(a). time 7,. [Here D is calculated from the mean-square dis-
placement for thé (smal)) particles, andr, is calculated by
fitting the a-relaxation part of the self-intermediate scattering
time, and has a maximum at some intermediate ttfhe  function at the wave vector corresponding to the first peak in
Both t; and the amplitude of the pealg,(t;), increase
strongly with decreasing. At the lowest value ofT, the
amplitude ofy,(t) decreases, possibly due to finite size ef- 1¢*
fects or to the change in dynamiesnear T.. The inset
shows the self-, distinct-, and cross-termsxyqft) for one f
value of T, and we see tha{ssis indeed the dominant term. | s
Thus, y4(t) is dominated by the growing range of spatial
correlations betweelocalizedparticles in this fluid, and}
is the time when this correlation is strong&stn fact, sev- ,
eral authors have reported evidence of a growing length scall0 .z
associated with solid-like behavior in dense flLAds. 5.4(T - 0.502)™*
Figure Xb) showsy(t) calculated from Eq(10) as a ot,
function of time for different values of. We find thaty, (t) | | | ; ;
becomes negligable at small and large times and has a max ‘
mum at some intermediate timg where the spatial corre-

1.0 £-6 _..'8_8__&_ —————— 3‘

lation of squared particle displacements is strongest. Thisws | Q0 T e |
behavior is similar to that exhibited by (t) calculated in = ® 30Dt,,
Ref. 9. © BLATI
As shown in Fig. 2, bothy,(t7) and yu(ty,) increase ‘ ‘ ‘

: . ) \ " 102 L 0.6 0.9
strongly with decreasing [with the exception ofy,(t;) at = (30D)""
the lowest temperatuteOver the limited temperature range 8.5(T - 0.592)™"
of our simulations, both functions may be reasonably fitted ot
by power-law functionsT—T.) ~ ¥ with T,=0.592, with the  1¢' . . ‘ L ‘

0.6 0.7 0.8 0.9

apparent exponentg,=0.80=0.07 andyy, =0.87+0.05, as
shown in the figure(In fitting the power law T, is held fixed
to the valueT,=0.592 determined in previous woyk Of FIG. 3. (a) Temperature dependence of and the timet} at which y,(t)
course, precise determination of the functional form requiresxhibits a maximum.(b) Temperature dependence of the inverse self-
simulations at lower temperatures and larger simulations tgiffusion coefficientD and the timety, at whm?xM(t) exhibits a maximum.
. S . The solid |i law fi D~ ively(excluding th
reduce any possible finite size effects expected due to thy' S0lid lines are power law fits to, andD, respectivelyexcluding the
. . . - " lowest temperatuje with T, fixed. Insets: Comparison dff andty, with
growing range of correlated particle motion and localizationygth p-1 and r, . As plotted, a line of zero sloplashed lingindicates

driving the growth ofy(t) and y4(t). proportionality.
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